1.0 USE AND APPLICATION

1.1 Definitions

-----NOTE-----

The defined terms of this section appear in capitalized type and are applicable throughout these Technical Specifications and Bases.

<u>Term</u> <u>Definition</u>

ACTIONS ACTIONS shall be that part of a Specification that prescribes

Required Actions to be taken under designated Conditions

within specified Completion Times.

AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) The APLHGR shall be applicable to a specific planar height and is equal to the sum of the heat generation rate per unit length of fuel rod for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle

CHANNEL CALIBRATION

A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds within the necessary range and accuracy to known values of the parameter that the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel, including the required sensor, alarm, display, and trip functions, and shall include the CHANNEL FUNCTIONAL TEST. Calibration of instrument channels with resistance temperature detector (RTD) or thermocouple sensors may consist of an inplace qualitative assessment of sensor behavior and normal calibration of the remaining adjustable devices in the channel. The CHANNEL CALIBRATION may be performed by means of any series of sequential, overlapping, or total channel steps so that the entire channel is calibrated.

CHANNEL CHECK

A CHANNEL CHECK shall be the qualitative assessment, by observation, of channel behavior during operation. This determination shall include, where possible, comparison of the channel indication and status to other indications or status derived from independent instrument channels measuring the same parameter.

1.1

CHANNEL FUNCTIONAL TEST

A CHANNEL FUNCTIONAL TEST shall be the injection of a simulated or actual signal into the channel as close to the sensor as practicable to verify OPERABILITY, including required alarm, interlock, display, and trip functions, and channel failure trips. The CHANNEL FUNCTIONAL TEST may be performed by means of any series of sequential, overlapping, or total channel steps so that the entire channel is tested.

CORE ALTERATION

CORE ALTERATION shall be the movement of any fuel, sources, or reactivity control components, within the reactor vessel with the vessel head removed and fuel in the vessel. The following exceptions are not considered to be CORE ALTERATIONS:

- a. Movement of wide range neutron monitors, local power range monitors, traversing incore probes, or special movable detectors (including undervessel replacement); and
- b. Control rod movement, provided there are no fuel assemblies in the associated core cell.

Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position.

CORE OPERATING LIMITS REPORT (COLR)

The COLR is the unit specific document that provides cycle specific parameter limits for the current reload cycle. These cycle specific limits shall be determined for each reload cycle in accordance with Specification 16.6.9.4. Plant operation within these limits is addressed in individual Specifications.

I-131

DOSE EQUIVALENT I-131 shall be that concentration of I-131 (microcuries/gram) that alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134, and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be those listed in Table III of TID-14844, AEC, 1962, "Calculation of Distance Factors for Power and Test Reactor Sites" The following is defined equivalent to 3.7 x10⁴ Bq $(1\mu\text{Ci})$ of I-131; I-132, 1.07 x 10^6 Bq $(29\mu\text{Ci})$; I-133, 1.33x10⁵Bq (3.6μCi); I-134,insignificant; I-135, 4.44 x 10⁵Bq $(12\mu Ci)$

COOLING SYSTEM (ECCS) RESPONSE **TIME**

EMERGENCY CORE The ECCS RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its ECCS initiation setpoint at the channel sensor until the ECCS equipment is capable of performing its safety function (i.e., the valves travel to their required positions, and pump discharge pressure reach their required value, etc.). shall include diesel generator starting and sequence loading delays, where applicable. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.

END OF CYCLE RECIRCULATION PUMP TRIP (EOC RPT) SYSTEM **RESPONSE TIME**

The EOC RPT SYSTEM RESPONSE TIME shall be that time interval from initial signal generation by the associated turbine stop valve limit switch or from when the turbine control valve hydraulic oil control oil pressure drops below the pressure switch setpoint to complete suppression of the electric arc between the fully open contacts of the recirculation pump circuit breaker. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured, except for the breaker arc suppression time, which is not measured but is validated to conform to the manufacturer's design value.

RESPONSE TIME

ISOLATION SYSTEM The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation initiation setpoint at the channel sensor until the isolation valves travel to their required positions. shall include the diesel generator starting and sequence loading delays, plus the valve stroke time, where applicable. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.

La

The maximum allowable primary containment leakage rate, La, shall be 0.5% of primary containment air weight per day at the calculated peak containment pressure (Pa).

1.1

LEAKAGE

LEAKAGE shall be:

- a. Identified LEAKAGE
 - 1. LEAKAGE into the drywell, such as that from pump seals or valve packing, that is captured and conducted to a sump or collecting tank; or
 - 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE;
- b. Unidentified LEAKAGE
 All LEAKAGE into the drywell that is not identified LEAKAGE;
- c. Total LEAKAGE Sum of the identified and unidentified LEAKAGE;
- d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or vessel wall.

LINEAR HEAT GENERATION RATE (LHGR)

The LHGR shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length.

LOGIC SYSTEM FUNCTIONAL TEST

A LOGIC SYSTEM FUNCTIONAL TEST shall be a test of all required logic components (i.e., all required relays and contacts, trip units, solid state logic elements, etc.) of a logic circuit, from as close to the sensor as practicable up to, but not including, the actuated device, to verify OPERABILITY. The LOGIC SYSTEM FUNCTIONAL TEST may be performed by means of any series of sequential, overlapping, or total system steps so that the entire logic system is tested.

MINIMUM CRITICAL POWER RATIO (MCPR)

The MCPR shall be the smallest critical power ratio (CPR) that exists in the core. The CPR is that power in the assembly that is calculated by application of the appropriate correlation(s) to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.

MODE

A MODE shall correspond to any one inclusive combination of mode switch position, average reactor coolant temperature, and reactor vessel head closure bolt tensioning specified in Table 1.1-1 with fuel in the reactor vessel.

BILITY

OPERABLE—OPERA A system, subsystem, division, component, or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified safety function(s) and when all necessary attendant instrumentation, controls, normal or emergency electrical power, cooling and seal water, lubrication, and other auxiliary equipment that are required for the system, subsystem, division, component, or device to perform its specified safety function(s) are also capable of performing their related support function(s).

PHYSICS TESTS

PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation. These tests are:

- a. Described in Chapter 14, Initial Test and operation Program of the FSAR;
- b. Authorized under the provisions of 10 CFR50.59; or
- c. Otherwise approved by the ROC-AEC

PRESSURE AND **TEMPERATURE** LIMITS (PTL)

The PTL is the unit specific document that provides the reactor vessel pressure and temperature limit, including heatup and cooldown rates, for the current reactor vessel fluency period. Plant operation within these operating limits is addressed in LCO 3.4.10, "RCS Pressure and Temperature (P/T) Limits."

RATED THERMAL POWER(RTP)/ ORIGINAL LICENSED THERMAL POWER

RTP shall be a total reactor core heat transfer rate to the reactor coolant effective as of cycle 26 MOC for Unit 1 and cycle 26 BOC for Unit 2. The current RTP is increased to 1840 MWt,3.66% above its OLTP of 1775 MWt.

REACTOR PROTECTION SYSTEM (RPS) **RESPONSE TIME**

The RPS RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its RPS trip setpoint at the channel sensor until de-energization of the scram pilot valve solenoids. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.

1.1 Definitions

SHUTDOWN MARGIN (SDM)

SDM shall be the amount of reactivity by which the reactor is subcritical or would be subcritical assuming that:

- a. The reactor is xenon free;
- b. The moderator temperature is 20° C (68° F); and
- c. All control rods are fully inserted except for the single control rod of highest reactivity worth, which is assumed to be fully withdrawn.

With control rods not capable of being fully inserted, the reactivity worth of these control rods must be accounted for in the determination of SDM.

STAGGERED TEST BASIS

A STAGGERED TEST BASIS shall consist of the testing of one of the systems, subsystems, channels, or other designated components during the interval specified by the Surveillance Frequency, so that all systems, subsystems, channels, or other designated components are tested during n Surveillance Frequency intervals, where n is the total number of systems, subsystems, channels, or other designated components in the associated function.

THERMAL POWER

THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.

TURBINE BYPASS **TIME**

The TURBINE BYPASS SYSTEM RESPONSE TIME SYSTEM RESPONSE consists of two components:

- a. The time from initial movement of the main turbine stop valve or control valve until initial movement of the turbine bypass valve; and
- b. The time from initial movement of the main turbine stop valve or control valve until 80% of the turbine bypass valve opening is established.

The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.

1.1 Definitions

Table 1.1-1 (page 1 of 1) MODES

MODE	TITLE	REACTOR MODE SWITCH POSITION	AVERAGE REACTOR COOLANT TEMPERATURE
1	Power Operation	Run	NA
2	Startup	Refuel(a) or Startup/Hot Standby	NA
3	Hot Shutdown(a)	Shutdown	>100°C (212°F)
4	Cold Shutdown(a)	Shutdown	≤100°C (212°F)
5	Refueling(b)	Shutdown or Refuel	NA

- (a) All reactor vessel head closure bolts fully tensioned.
- (b) One or more reactor vessel head closure bolts less than fully tensioned.

1.0 USE AND APPLICATION

1.2 Logical Connectors

PURPOSE

The purpose of this section is to explain the meaning of logical connectors.

Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TS are The physical arrangement of these connectors AND and OR. constitutes logical conventions with specific meanings.

BACKGROUND Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentions of the logical connectors.

> When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.

EXAMPLES

The following examples illustrate the use of logical connectors.

EXAMPLE 1.2-1

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. LCO not met.	A.1 Verify	
	AND	
	A.2 Restore	
		(4:1)

EXAMPLE 1.2-1 (continued)

In this example the logical connector AND is used to indicate that when in Condition A, both Required Actions A.1 and A.2 must be completed.

EXAMPLE 1.2-2

ACTIONS

ACTIONS		
CONDITION	REQUIRED ACTION	COMPLETION TIME
A. LCO not met.	A.1 Trip	
	<u>OR</u>	
	A.2.1 Verify	
	<u>AND</u>	
	A.2.2.1 Reduce	
	<u>OR</u>	
	A.2.2.2 Perform	
	<u>OR</u>	
	A.3 Align	

This example represents a more complicated use of logical connectors. Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector OR and the left justified placement. Any one of these three Actions may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector AND. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector OR indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.

1.0 USE AND APPLICATION

1.3 Completion Times

PURPOSE

The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.

BACKGROUND Limiting Conditions for Operation (LCOs) specify minimum requirements for ensuring safe operation of the unit. ACTIONS associated with an LCO state Conditions that typically describe the ways in which the requirements of the LCO can fail to Specified with each stated Condition are Required Action(s) and Completion Times(s).

DESCRIPTION

The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., inoperable equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the unit is in a MODE or specified condition stated in the Applicability of the LCO. Required Actions must be completed prior to the expiration of the specified Completion Time. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the unit is not within the LCO Applicability.

If situations are discovered that require entry into more than one Condition at a time within a single LCO (multiple Conditions), the Required Actions for each Condition must be performed within the associated Completion Time. When in multiple Conditions, separate Completion Times are tracked for each Condition starting from the time of discovery of the situation that required entry into the Condition.

Once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition unless specifically stated. Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition.

However, when a subsequent division, subsystem, component, or

DESCRIPTION (continued)

variable expressed in the Condition is discovered to be inoperable or not within limits, the Completion Time(s) may be extended. To apply this Completion Time extension, two criteria must first be met. The subsequent inoperability:

- a. Must exist concurrent with the <u>first</u> inoperability; and
- b. Must remain inoperable or not within limits after the first inoperability is resolved.

The total Completion Time allowed for completing a Required Action to address the subsequent inoperability shall be limited to the more restrictive of either:

- a. The stated Completion Time, as measured from the initial entry into the Condition, plus an additional 24 hours; or
- b. The stated Completion Time as measured from discovery of the subsequent inoperability.

The above Completion Time extensions do not apply to those Specifications that have exceptions that allow completely separate re-entry into the Condition (for each division, subsystem, component or variable expressed in the Condition) and separate tracking of Completion Times based on this re-entry. These exceptions are stated in individual Specifications.

The above Completion Time extension does not apply to a Completion Time with a modified "time zero." This modified "time zero" may be expressed as a repetitive time (i.e., "once per 8 hours," where the Completion Time is referenced from a previous completion of the Required Action versus the time of Condition entry) or as a time modified by the phrase "from discovery . . ." Example 1.3-3 illustrates one use of this type of Completion Time. The 10 day Completion Time specified for Condition A and B in Example 1.3-3 may not be extended.

EXAMPLES

The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions.

1.3 Completion Times

EXAMPLES (continued)

EXAMPLE 1.3-1

ACTIONS

CONDITION		REQUIRED ACTION	COMPLETION TIME
B.	Required Action and	B.1 Be in MODE 3.	12 hours
	associated Completion Time not met.	AND B.2 Be in MODE 4.	36 hours

Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered.

The Required Actions of Condition B are to be in MODE 3 within 12 hours AND in MODE 4 within 36 hours. A total of 12 hours is allowed for reaching MODE 3 and a total of 36 hours (not 48 hours) is allowed for reaching MODE 4 from the time that Condition B was entered. If MODE 3 is reached within 6 hours, the time allowed for reaching MODE 4 is the next 30 hours because the total time allowed for reaching MODE 4 is 36 hours.

If Condition B is entered while in MODE 3, the time allowed for reaching MODE 4 is the next 36 hours.

EXAMPLE 1.3-2

ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME
A.	One pump inoperable.	A.1	Restore pump to OPERABLE status.	7 days
В.	Required Action and		Be in MODE 3.	12 hours
	associated Completion Time not met.	B.2	D Be in MODE 4.	36 hours

When a pump is declared inoperable, Condition A is entered. If the pump is not restored to OPERABLE status within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the inoperable pump is restored to OPERABLE status after Condition B is entered, Conditions A and B are exited, and therefore, the Required Actions of Condition B may be terminated.

When a second pump is declared inoperable while the first pump is still inoperable, Condition A is not re-entered for the second pump. LCO 3.0.3 is entered, since the ACTIONS do not include a Condition for more than one inoperable pump. The Completion Time clock for Condition A does not stop after LCO 3.0.3 is entered, but continues to be tracked from the time Condition A was initially entered.

While in LCO 3.0.3, if one of the inoperable pumps is restored to OPERABLE status and the Completion Time for Condition A has not expired, LCO 3.0.3 may be exited and operation continued in accordance with Condition A.

While in LCO 3.0.3, if one of the inoperable pumps is restored to OPERABLE status and the Completion Time for Condition A has expired, LCO 3.0.3 may be exited and operation continued in

1.3 Completion Times

EXAMPLES (continued)

EXAMPLE 1.3-2 (continued)

accordance with Condition B. The Completion Time for Condition B is tracked from the time the Condition A Completion Time expired.

On restoring one of the pumps to OPERABLE status, the Condition A Completion Time is not reset, but continues from the time the first pump was declared inoperable. This Completion Time may be extended if the pump restored to OPERABLE status was the first inoperable pump. A 24 hour extension to the stated 7 days is allowed, provided this does not result in the second pump being inoperable for > 7 days.

EXAMPLE 1.3-3

ACTIONS

	CONDITION		QUIRED ACTION	COMPLETION TIME
A.	One Function X subsystem inoperable.	A.1	Restore Function X subsystem to OPERABLE status.	7 days AND 10 days from discovery of failure to meet the LCO
В.	One Function Y subsystem inoperable.	B.1	Restore Function Y subsystem to OPERABLE status	72 hours AND 10 days from discovery of failure to meet the LCO
C.	One Function X subsystem inoperable. AND One Function Y subsystem inoperable.	C.1 <u>OR</u> C.2	Restore Function X subsystem to OPERABLE status. Restore Function Y subsystem to OPERABLE status.	72 hours 72 hours

When one Function X subsystem and one Function Y subsystem are inoperable, Condition A and Condition B are concurrently applicable. The Completion Times for Condition A and Condition B are tracked separately for each subsystem, starting from the time each subsystem was declared inoperable and the Condition was entered. A separate Completion Time is

EXAMPLE 1.3-3 (continued)

established for Condition C and tracked from the time the second subsystem was declared inoperable (i.e., the time the situation described in Condition C was discovered).

If Required Action C.2 is completed within the specified Completion Time, Conditions B and C are exited. If the Completion Time for Required Action A.1 has not expired, operation may continue in accordance with Condition A. The remaining Completion Time in Condition A is measured from the time the affected subsystem was declared inoperable (i.e., initial entry into Condition A).

The Completion Times of Conditions A and B are modified by a logical connector, with a separate 10 day Completion Time measured from the time it was discovered the LCO was not met. In this example, without the separate Completion Time, it would be possible to alternate between Conditions A, B, and C in such a manner that operation could continue indefinitely without ever restoring systems to meet the LCO. The separate Completion Time modified by the phrase "from discovery of failure to meet the LCO" is designed to prevent indefinite continued operation while not meeting the LCO. This Completion Time allows for an exception to the normal "time zero" for beginning the Completion Time "clock". In this instance, the Completion Time "time zero" is specified as commencing at the time the LCO was initially not met, instead of at the time the associated Condition was entered.

EXAMPLE 1.3-4

ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME
A.	One or more valves inoperable.	A.1	Restore valve(s) to OPERABLE status.	4 hours
В.	Required Action and	B.1	Be in MODE 3.	12 hours
	associated Completion Time not met.	ANI B.2	_	36 hours

A single Completion Time is used for any number of valves inoperable at the same time. The Completion Time associated with Condition A is based on the initial entry into Condition A and is not tracked on a per valve basis. Declaring subsequent valves inoperable, while Condition A is still in effect, does not trigger the tracking of separate Completion Times.

Once one of the valves has been restored to OPERABLE status, the Condition A Completion Time is not reset, but continues from the time the first valve was declared inoperable. The Completion Time may be extended if the valve restored to OPERABLE status was the first inoperable valve. The Condition A Completion Time may be extended for up to 4 hours provided this does not result in any subsequent valve being inoperable for > 4 hours.

If the Completion Time of 4 hours (plus the extension) expires while one or more valves are still inoperable, Condition B is entered.

1.3 Completion Times

EXAMPLES (continued)

EXAMPLE 1.3-5

ACTIONIC

ACTIONS	
N	IOTE

Separate Condition entry is allowed for each inoperable valve.

	CONDITION	REC	QUIRED ACTION	COMPLETION TIME
A.	One or more valves inoperable.	A.1	Restore valve(s) to OPERABLE status.	4 hours
В.	Required Action and associated Completion	ANI	_	12 hours
	Time not met.	В.2	Be in MODE 4.	36 hours

The Note above the ACTIONS Table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.

The Note allows Condition A to be entered separately for each inoperable valve, and Completion Times tracked on a per valve basis. When a valve is declared inoperable, Condition A is entered and its Completion Time starts. If subsequent valves are declared inoperable, Condition A is entered for each valve and separate Completion Times start and are tracked for each valve.

If the Completion Time associated with a valve in Condition A expires, Condition B is entered for that valve. If the Completion Times associated with subsequent valves in Condition A expire, Condition B is entered separately for each valve and separate Completion Times start and are tracked for each valve. If a valve that caused entry into Condition B is restored to OPERABLE status, Condition B is exited for that valve.

EXAMPLE 1.3-5 (continued)

Since the Note in this example allows multiple Condition entry and tracking of separate Completion Times, Completion Time extensions do not apply.

EXAMPLE 1.3-6

ACTIONS

	CONDITION		QUIRED ACTION	COMPLETION TIME
A.	One channel inoperable.	A.1	Perform SR 3.x.x.x.	Once per 8 hours
		<u>OR</u>		
		A.2	Reduce THERMAL POWER to ≤ 50% RTP.	8 hours
В.	Required Action and associated Completion Time not met.	B.1	Be in MODE 3.	12 hours

Entry into Condition A offers a choice between Required Action A.1 or A.2. Required Action A.1 has a "once per" Completion Time, which qualifies for the 25% extension, per SR 3.0.2, to each performance after the initial performance. The initial 8 hour interval of Required Action A.1 begins when Condition A is entered and the initial performance of Required Action A.1 must be complete within the first 8 hour interval. If Required Action

A.1 is followed and the Required Action is not met within the Completion Time (plus the extension allowed by SR 3.0.2),

1.3 Completion Times

EXAMPLES (continued)

EXAMPLE 1.3-6 (continued)

Condition B is entered. If Required Action A.2 is followed and the Completion Time of 8 hours is not met, Condition B is entered.

If after entry into Condition B, Required Action A.1 or A.2 is met, Condition B is exited and operation may then continue in Condition A.

EXAMPLE 1.3-7

ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME
A.	One subsystem inoperable.	A.1	Verify affected subsystem isolated.	1 hour AND
		ANI	<u>)</u>	Once per 8 hours thereafter
		A.2	Restore subsystem to OPERABLE status.	72 hours
В.	Required Action and associated	B.1 ANI	Be in MODE 3.	12 hours
	Completion Time not met.		Be in MODE 4.	36 hours

Required Action A.1 has two Completion Times. The 1 hour Completion Time begins at the time the Condition is entered and each "Once per 8 hours thereafter" interval begins upon performance of Required Action A.1.

1.3 Completion Times

EXAMPLES (continued)

EXAMPLE 1.3-7 (continued)

If after Condition A is entered, Required Action A.1 is not met within either the initial 1 hour or any subsequent 8 hour interval from the previous performance (plus the extension allowed by SR 3.0.2), Condition B is entered. The Completion Time clock for Condition A does not stop after Condition B is entered, but continues from the time Condition A was initially entered. If Required Action A.1 is met after Condition B is entered, Condition B is exited and operation may continue in accordance with Condition A, provided the Completion Time for Required Action A.2 has not expired.

IMMEDIATE COMPLETION TIME

When "Immediately" is used as a Completion Time, the Required Action should be pursued without delay and in a controlled manner.

1.4 Frequency

PURPOSE

The purpose of this section is to define the proper use and application of Frequency requirements.

DESCRIPTION

Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated LCO. An understanding of the correct application of the specified Frequency is necessary for compliance with the SR.

The "specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Surveillance Requirement (SR) Applicability. The "specified Frequency" consists of the requirements of the Frequency column of each SR, as well as certain Notes in the Surveillance column that modify performance requirements.

Sometimes special situations dictate when the requirements of a Surveillance are to be met. They are "otherwise stated" conditions allowed by SR 3.0.1. They may be stated as clarifying Notes in the Surveillance, as part of the Surveillance, or both. Example 1.4-4 discusses these special situations.

Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With an SR satisfied, SR 3.0.4 imposes no restriction.

The use of "met" or "performed" in these instances conveys specific meanings. A Surveillance is "met" only when the acceptance criteria are satisfied. Known failure of the requirements of a Surveillance, even without a Surveillance specifically being "performed," constitutes a Surveillance not "met." "Performance" refers only to the requirement to specifically determine the ability to meet the acceptance criteria. SR 3.0.4 restrictions would not apply if both the following conditions are satisfied:

DESCRIPTION (continued)

- a. The Surveillance is not required to be performed; and
- b. The Surveillance is not required to be met, or even if required to be met, is not known to be failed.

EXAMPLES

The following examples illustrate the various ways that Frequencies are specified. In these examples, the Applicability of the LCO (LCO not shown) is MODES 1, 2, and 3.

EXAMPLE 1.4-1

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Perform CHANNEL CHECK.	12 hours

Example 1.4-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, an extension of the time interval to 1.25 times the interval specified in the Frequency is allowed by SR 3.0.2 for The measurement of this interval operational flexibility. continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment is inoperable, a variable is outside specified limits, or the unit is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the unit is in a MODE or other specified condition in the Applicability of the LCO, and the performance of the Surveillance is not otherwise modified (refer to Examples 1.4-3 and 1.4-4), then SR 3.0.3 becomes applicable.

If the interval as specified by SR 3.0.2 is exceeded while the unit is not in a MODE or other specified condition in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2 prior to entry into the MODE or other specified condition. Failure to do so would result in a violation of SR3.0.4.

EXAMPLE 1.4-2

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Verify flow is within limits.	Once within 12 hours after ≥ 25% RTP
	AND
	24 hours thereafter

Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time reactor power is increased from a power level < 25% RTP to $\ge 25\%$ RTP, the Surveillance must be performed within 12 hours.

The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the extension allowed by SR 3.0.2.

"Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If reactor power decreases to < 25% RTP, the measurement of both intervals stops. New intervals start upon reactor power reaching 25% RTP.

EXAMPLE 1.4-3

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Not required to be performed until 12 hours after \geq 25% RTP.	
Perform channel adjustment.	7 days

The interval continues whether or not the unit operation is < 25% RTP between performances.

As the Note modifies the required performance of the Surveillance, it is construed to be part of the "specified Frequency." Should the 7 day interval be exceeded while operation is < 25% RTP, this Note allows 12 hours after power reaches \geq 25% RTP to perform the Surveillance. The Surveillance is still considered to be within the "specified Frequency." Therefore, if the Surveillance were not performed within the 7 day interval (plus the extension allowed by SR 3.0.2), but operation was < 25% RTP, it would not constitute a failure of the SR or failure to meet the LCO. Also, no violation of SR 3.0.4 occurs when changing MODES, even with the 7 day Frequency not met, provided operation does not exceed 12 hours with power \geq 25% RTP.

Once the unit reaches 25% RTP, 12 hours would be allowed for completing the Surveillance. If the Surveillance were not performed within this 12 hour interval, there would then be a failure to perform a Surveillance within the specified Frequency, and the provisions of SR 3.0.3 would apply.

EXAMPLE 1.4-4

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Only required to be met in MODE 1.	
Verify leakage rates are within limits.	24 hours

Example 1.4-4 specifies that the requirements of this Surveillance do not have to be met until the unit is in MODE 1. measurement for the Frequency of this Surveillance continues at all times, as described in Example 1.4-1. However, the Note constitutes an "otherwise stated" exception to the Applicability of Therefore, if the Surveillance were not this Surveillance. performed within the 24 hour interval (plus the extension allowed by SR 3.0.2), but the unit was not in MODE 1, there would be no failure of the SR nor failure to meet the LCO. Therefore, no violation of SR 3.0.4 occurs when changing MODES, even with the 24 hour Frequency exceeded, provided the MODE change was not made into MODE 1. Prior to entering MODE 1 (assuming again that the 24 hour Frequency were not met), SR 3.0.4 would require satisfying the SR.